Events
-
-
Numerical Modeling of InAs/InP Quantum Dash Ridge Lasers as a Function of Temperature
Virtual: https://events.vtools.ieee.org/m/535731Numerical Modeling of InAs/InP Quantum Dash Ridge Lasers as a Function of Temperature Abstract: Mode‑locked semiconductor lasers based on InAs/InP quantum‑dash structures have emerged as promising, compact sources for broadband frequency‑comb generation, particularly for dense wavelength‑division multiplexing (DWDM) and other high‑capacity optical communication systems. In this work, we present a comprehensive numerical study of InAs/InP quantum‑dash ridge lasers, analyzing how device geometry, carrier dynamics, and dispersion properties influence the formation, stability, and bandwidth of the generated optical combs. Our modeling framework captures the interplay between gain recovery, saturable absorption, group‑velocity dispersion, and nonlinear phase modulation, enabling detailed predictions of pulse characteristics as a function of structural and operational parameters. We highlight design trade‑offs that optimize pulse duration, repetition rate, and comb flatness, and we discuss the implications of these results for integrated photonic systems requiring low‑cost, energy‑efficient comb sources. This analysis provides valuable guidelines for engineering next‑generation quantum‑dash mode‑locked lasers tailored to emerging communications and sensing applications. ------------------------------------------------------------------------ Modélisation numérique des lasers à tirets quantiques InAs/InP en fonction de la température Résumé: Résumé : Les lasers semi-conducteurs à modes verrouillés, basés sur des structures à points quantiques InAs/InP, se sont révélés être des sources compactes et prometteuses pour la génération de peignes de fréquences à large bande, notamment pour le multiplexage par répartition en longueur d'onde dense (DWDM) et d'autres systèmes de communication optique à haute capacité. Dans ce travail, nous présentons une étude numérique complète des lasers à crête à points quantiques InAs/InP, analysant l'influence de la géométrie du dispositif, de la dynamique des porteurs et des propriétés de dispersion sur la formation, la stabilité et la bande passante des peignes optiques générés. Notre modèle capture l'interaction entre la récupération du gain, l'absorption saturable, la dispersion de vitesse de groupe et la modulation de phase non linéaire, permettant des prédictions détaillées des caractéristiques des impulsions en fonction des paramètres structurels et opérationnels. Nous mettons en évidence les compromis de conception qui optimisent la durée des impulsions, la fréquence de répétition et la planéité du peigne, et nous discutons des implications de ces résultats pour les systèmes photoniques intégrés nécessitant des sources de peignes à faible coût et à haute efficacité énergétique. Cette analyse fournit des indications précieuses pour la conception de lasers à modes verrouillés à points quantiques de nouvelle génération, adaptés aux applications émergentes de communication et de détection. They will be presenting this paper: https://ieeexplore.ieee.org/document/11009133 About / A propos The High Throughput and Secure Networks (HTSN) Challenge program is hosting regular virtual seminar series to promote scientific information sharing, discussions, and interactions between researchers. https://nrc.canada.ca/en/research-development/research-collaboration/programs/high-throughput-secure-networks-challenge-program Le programme Réseaux Sécurisés à Haut Débit (RSHD) organise régulièrement des séries de séminaires virtuels pour promouvoir le partage d’informations scientifiques, les discussions et les interactions entre chercheurs. https://nrc.canada.ca/fr/recherche-developpement/recherche-collaboration/programmes/programme-defi-reseaux-securises-haut-debit Co-sponsored by: National Research Council, Canada. Speaker(s): Sebastian Schaefer, Karin Hinzer Virtual: https://events.vtools.ieee.org/m/535731
-
Advanced Scientific Illustration Workshop with Blender
Room: 214, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada, J3X 1P7Back by popular demand, this technical workshop session will focus on advancing your skills in creating scientific illustrations using Blender. The workshop will cover more advanced techniques, including building complex components from scratch, working with materials, and improving scene lighting for professional-quality visuals. Participants are encouraged to bring their laptops and follow along during the hands-on session. Coffee and snacks will be provided. The workshop will take place on Wednesday, February 18th, from 13:00 to 15:00 in Room 214. Interested participants should register by Friday, February 13th. Co-sponsored by: OPTICA and SPIE Student Chapters at INRS Room: 214, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada, J3X 1P7
-
Introduction to Blockchain – IEEE Bilingual Workshop
Virtual: https://events.vtools.ieee.org/m/538224We are pleased to launch the Introduction to Blockchain IEEE Bilingual Workshop, organized by the IEEE Education Society – Montréal Chapter in collaboration with IEEE Blockchain Montreal.[] This four-part series begins with Session 1 on February 19, 2026 and is designed to provide a clear, structured foundation in blockchain fundamentals and real-world applications. Delivered in English and French, the workshop is accessible to beginners and professionals alike, with interactive discussion and Q&A. We look forward to welcoming our Montreal tech and engineering community. Full details and registration available via the event link. Speaker(s): Pierre Marie, Marina Virtual: https://events.vtools.ieee.org/m/538224
-
-
Photonic Ising machines and quantum neural networks
J. Armand Bombardier J-1035, Polytechnique Montréal, Montréal, Quebec, Canada, H3T 1J4Abstract: Artificial intelligence and combinatorial optimization problems—such as drug discovery and prime factorization—remain challenging even for advanced computers. We are attempting to address these limitations by building photonic processors inspired by the brain—photonic neural networks—which utilize light for faster and more energy-efficient processing . We will discuss photonic networks, including Ising machines enabled by thin-film lithium niobate photonics , highlighting their applications in number partitioning, protein folding, wireless communications, and deep learning. Time permitting, we will briefly introduce a quantum photonic neural network that can learn to act as near-perfect components of quantum technologies and discuss the role of weak nonlinearities . Shastri, B.J. et al. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics 15 (2021) Al-Kayed, N. et al. Programmable 200 GOPS Hopfield-inspired photonic Ising machine. Nature 648 (2025) Ewaniuk, J et al. Imperfect quantum photonic neural networks. Advanced Quantum Technologies (2023) . Co-sponsored by: Prof. Nicolas Quesada Speaker(s): Bhavin J. Shastri J. Armand Bombardier J-1035, Polytechnique Montréal, Montréal, Quebec, Canada, H3T 1J4