Senior Member Elevation Drive by IEEE Photonics Society Montreal

Virtual: https://events.vtools.ieee.org/m/478354

Join us for an exciting opportunity to advance your professional standing with the IEEE Photonics Society Montreal! . Information "Kickoff" Meeting: - Date: Friday, 11th March 2025 - Time: 1:00 PM - Format: Online, 40 minutes - Attendance: Limited to 12 people. Registration required. - Target Audience: IPS Montreal Regular Members and attendees of our November panel Objective: This online discussion aims to clarify the Senior Membership process, pre-vet eligibility criteria, and provide an opportunity to meet other members. Don't miss this chance to elevate your membership status and engage with fellow professionals in the photonics community! The next deadline for Senior Members applications is 21st June 2025 - https://www.ieee.org/membership/senior/review-panel.html Virtual: https://events.vtools.ieee.org/m/478354

Why interference phenomena do not capture the essence of quantum theory

J. Armand Bombardier J-1035, Polytechnique Montréal, Montréal, Quebec, Canada, H3T 1J4

Abstract: Quantum interference phenomena are widely viewed as posing a challenge to the classical worldview. Feynman even went so far as to proclaim that they are the only mystery and the basic peculiarity of quantum mechanics. Many have also argued that basic interference phenomena force us to accept a number of radical interpretational conclusions, including: that a photon is neither a particle nor a wave but rather a Jekyll-and-Hyde sort of entity that toggles between the two possibilities, that reality is observer-dependent, and that systems either do not have properties prior to measurements or else have properties that are subject to nonlocal or backwards-in-time causal influences. In this work, we show that such conclusions are not, in fact, forced on us by basic interference phenomena. We do so by describing an alternative to quantum theory, a statistical theory of a classical discrete field (the ‘toy field theory’) that reproduces the relevant phenomenology of quantum interference while rejecting these radical interpretational claims. It also reproduces a number of related interference experiments that are thought to support these interpretational claims, such as the Elitzur-Vaidman bomb tester, Wheeler’s delayed-choice experiment, and the quantum eraser experiment. The systems in the toy field theory are field modes, each of which possesses, at all times, both a particle-like property (a discrete occupation number) and a wave-like property (a discrete phase). Although these two properties are jointly possessed, the theory stipulates that they cannot be jointly known. The phenomenology that is generally cited in favour of nonlocal or backwards-in-time causal influences ends up being explained in terms of inferences about distant or past systems, and all that is observer-dependent is the observer’s knowledge of reality, not reality itself. Co-sponsored by: Prof. Nicolas Quesada Speaker(s): David Schmid J. Armand Bombardier J-1035, Polytechnique Montréal, Montréal, Quebec, Canada, H3T 1J4

Printed RF Antennas — From Materials, Printing process to Applications

Virtual: https://events.vtools.ieee.org/m/477184

Printed RF Antennas -- From Materials, Printing process to Applications Abstract: Printed antennas, known for their low cost, diverse range of substrates, and various form factors, are establishing a new research field and complementing traditional PCB-based antennas. They are pivotal in the deployment of 5G/6G communications, IoT, autonomous driving, precision farming, smart cities, and more. Key applications include body-centric communications, off-body communications, human and animal body sensing/imaging, wireless power transfer, as well as flexible, foldable, or conformable antennas for typical communication uses. Antenna printing is typically performed using various printing techniques such as screen printing, inkjet printing, and aerosol jet printing, on substrates like plastic films, paper, wood, fabrics, PCBs, and more, utilizing conductive inks. In recent years, 3D printing has also been explored. Key material challenges include the low conductivity of conductive inks and the dielectric loss of substrate/superstrate materials. For metamaterial and multi-layer antennas, including intelligent reflective surfaces (RIS), critical factors such as printing resolution, via printing, layer thickness control, and the permittivity of dielectric inks must be carefully managed. This talk provides an overview of various printing processes and their advantages and disadvantages for antenna printing. It covers the requirements for conductive and dielectric inks, as well as different types of substrate materials and their impact on antenna performance. Additionally, the talk presents our work on addressing the low conductivity of conductive inks, developing low-loss dielectric materials, and fabricating single-layer and multilayer metamaterial-based antennas and intelligent reflective surfaces (RIS). This talk will include application examples such as printed HF RFID antennas for sensing and identification applications, printed UHF RFID antennas for point-of-sale applications, printed microwave antennas for LEO satellite communications and sensing, printed frequency selective surfaces, and printed metasurfaces for millimeter wave radar sensing and communication applications. ------------------------------------------------------------------------ Antennes RF imprimées : des matériaux, du procédé d'impression aux applications Résumé: Les antennes imprimées, réputées pour leur faible coût, la diversité de leurs substrats et leurs différents formats, constituent un nouveau domaine de recherche et complètent les antennes traditionnelles à base de PCB. Elles sont essentielles au déploiement des communications 5G/6G, de l'IoT, de la conduite autonome, de l'agriculture de précision, des villes intelligentes, et bien plus encore. Parmi les principales applications figurent les communications centrées sur le corps, les communications hors corps, la détection et l'imagerie corporelles humaines et animales, le transfert d'énergie sans fil, ainsi que les antennes flexibles, pliables ou conformables pour les applications de communication courantes. L'impression d'antennes est généralement réalisée à l'aide de diverses techniques d'impression telles que la sérigraphie, le jet d'encre et l'impression par jet d'aérosol, sur des substrats tels que les films plastiques, le papier, le bois, les tissus, les PCB, etc., en utilisant des encres conductrices. Ces dernières années, l'impression 3D a également été explorée. Les principaux défis liés aux matériaux comprennent la faible conductivité des encres conductrices et la perte diélectrique des matériaux substrats/superstrats. Pour les antennes métamatériaux et multicouches, y compris les surfaces réfléchissantes intelligentes (RIS), des facteurs critiques tels que la résolution d'impression, l'impression via, le contrôle de l'épaisseur de la couche et la permittivité des encres diélectriques doivent être soigneusement gérés. Cette présentation offre un aperçu des différents procédés d'impression, ainsi que de leurs avantages et inconvénients pour l'impression d'antennes. Elle aborde les exigences relatives aux encres conductrices et diélectriques, ainsi que les différents types de substrats et leur impact sur les performances des antennes. Elle présente également nos travaux sur la faible conductivité des encres conductrices, le développement de matériaux diélectriques à faibles pertes et la fabrication d'antennes monocouches et multicouches à base de métamatériaux et de surfaces réfléchissantes intelligentes (RIS). Cette présentation inclura des exemples d'applications tels que des antennes RFID HF imprimées pour des applications de détection et d'identification, des antennes RFID UHF imprimées pour des applications de point de vente, des antennes micro-ondes imprimées pour les communications et la détection par satellite LEO, des surfaces sélectives en fréquence imprimées et des métasurfaces imprimées pour des applications de détection et de communication radar à ondes millimétriques. [] George Xiao (NRC) About / A propos The High Throughput and Secure Networks (HTSN) Challenge program is hosting regular virtual seminar series to promote scientific information sharing, discussions, and interactions between researchers. https://nrc.canada.ca/en/research-development/research-collaboration/programs/high-throughput-secure-networks-challenge-program Le programme Réseaux Sécurisés à Haut Débit (RSHD) organise régulièrement des séries de séminaires virtuels pour promouvoir le partage d’informations scientifiques, les discussions et les interactions entre chercheurs. https://nrc.canada.ca/fr/recherche-developpement/recherche-collaboration/programmes/programme-defi-reseaux-securises-haut-debit Co-sponsored by: National Research Council, Canada. Optonique. Speaker(s): George Xiao, Virtual: https://events.vtools.ieee.org/m/477184

The AI Revolution in Wireless Communications: Magic, Myth, or the Next Reality?

Virtual: https://events.vtools.ieee.org/m/479551

Join us for an insightful lecture on "The AI Revolution in Wireless Communications: Magic, Myth, or the Next Reality?", where we explore the transformative role of Artificial Intelligence in shaping the future of wireless communication. Speaker(s): Prof. Metin Ozturk Virtual: https://events.vtools.ieee.org/m/479551

Robowars 2025

1515 Saint-Catherine St W #1428, Montreal, Quebec, Montreal, Quebec, Canada, H3G 1S6

Robowars is the first official robot-sumo tournament in North America recognized by the FSI - AJRST (All Japan Robot-Sumo Tournament). The competition pits sumo-bots against one another to see who can push their competitor out of the ring first. Participants are tasked with building a sumo robot capable of being active-reactive in the ring and they have to do it beforehand. This, therefore, is a perfect opportunity for students to expand and showcase their engineering skills. Indeed, the organizing team is working to attract potential recruiters to the event so students can showcase their talents. Robowars has been running for over 4 years! Last year's event had a Robowars record high attendance of 80 participants (25-30 teams). This year, we aim to welcome about 100 participants. However, IEEE has its lab open and offers knowledgeable lab supervisors who can help students with building their robots. Furthermore, IEEE has been expanding their reach and contacting universities from all over Canada to encourage participation in Robowars. Last year the University of Mcmaster joined our competitions. This year, we aim to take the competition to the international stage. We’ve begun discussions with AJRST, and if the event succeeds, the winner will earn a chance to compete in Japan’s prestigious robot-sumo tournament. 1515 Saint-Catherine St W #1428, Montreal, Quebec, Montreal, Quebec, Canada, H3G 1S6

Back to Top